MAR08-2007-004431

Abstract Submitted for the MAR08 Meeting of The American Physical Society

Sorting Category: 14.7 (C)

Molecular dynamics simulations of hexane on graphite at various coverages: the difference explicit hydrogens make

¹ M.W. ROTH, M.J. CONNOLLY, University of Northern Iowa, Department of Physics, PAUL A. GRAY, University of Northern Iowa, Department of Computer Science, CARLOS WEXLER, University of Missouri Columbia, Department of Physics and Astronomy — Molecular Dynamics simulations of hexane (C_6H_{14}) adlayers on graphite are carried out for coverages of $0.5 \le \rho \le 1$ monolayers. The hexanes have explicit hydrogens and the graphite is modeled as an all – atom, six – layer structure. Above $\rho \cong 0.9$ the herringbone solid loses orientational order at $T_1 = 140 \text{ K} \pm 3 \text{ K}$. At $\rho = 0.878$ the system presents vacancy patches and T_1 decreases to ca. 100 K. As coverage decreases further, the vacancy patches become larger and by $\rho = 0.614$ the solid is a connected network of randomly oriented domains. All cases show a weak nematic mespohase. The melting temperature is $T_2 = 160$ K \pm 3 K and falls to ca. 145 K by $\rho = 0.614$. The dynamics and energetics observed demonstrate that the explicit-hydrogen model of hexane is substantially more realistic than the UA approximation.

¹Acknowledgment is made to the Donors of The American Chemical Society Petroleum Research Fund (PRF43277 B5), the University of Missouri Research Board, and the D.O.E. (DE-FG02-07ER46411).

Prefer Oral Session Prefer Poster Session

Date submitted: 27 Nov 2007

Michael Roth rothm@uni.edu University of Northern Iowa

Electronic form version 1.4